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HEAT SHOCK PROTEINS AS NOVEL CANCER THERAPEUTICS: 

TARGETING THE HALLMARKS OF CANCER 

Chao Li, M.S., M.D. 

 
ABSTRACT 

 

Molecular chaperones, commonly known as heat shock proteins (HSPs), are essential 

for mammalian cells to maintain homeostasis, and HSPs function by inducing an 

ATPase-coupled structural change, followed by interactions with diverse co-chaperones and 

over 200 client proteins implicated in many critical signaling networks. These highly 

expressed HSPs participate in the onset and progression of several human diseases including 

cancer, and their connection with tumorigenesis has facilitated research and clinical trials 

related to targeting HSPs as a novel anti-tumor therapy. The predominant mechanism of 

chaperone inhibition is through either disruption of the HSP association with client protein or 

an altered binding state that ultimately leads to proteasome-mediated degradation. 

Importantly, chaperone inhibition results in the degradation of several client proteins that 

play critical roles in many of the pathways known as the Hallmarks of Cancer, such as 

proliferation, angiogenesis, invasion, metastasis, and drug resistance. Here, we discuss: (1) 

the current knowledge of HSPs, particularly studies related to Hsp90-targeted cancer therapy, 

(2) the targeting of Hsp90-mediated signaling interactions to prevent emergence of core 

Hallmarks of Cancer, (3) the recent progression of Hsp90 inhibitors in clinical trials. Finally, 

we propose combinatorial therapy, additional inhibitor discovery, and location-specific 

inhibition of HSPs as necessary next steps in chaperone-targeted research relevant to cancer 

therapy.  
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CHAPTER ONE 

INTRODUCTION 

 

The eukaryotic heat shock proteins (HSPs) are a set of the most highly conserved 

proteins in nature, collectively known as essential and ubiquitous molecular chaperones for 

their cytoprotective functions during the maintenance of organism homeostasis under both 

physiological and pathological conditions (Lindquist 1988; Hendrick et al 1993). 

Mammalian HSPs have also been recognized to play a series of critical roles in tumorigenesis, 

as well as their function in protein assembly and the prevention of protein misfolding and 

aggregation under stress conditions. Chaperones are divided into four major families, Hsp90, 

Hsp70, Hsp60, and Hsp20, according to their relative molecular mass (Calderwood et al 

2006; Jego et al 2010), while additional novel families include Hsp110 and Hsp170 (Easton 

et al 2000). In order to survive under the harsh conditions within the tumor 

microenvironment, cancer cells typically become dependent on stress-inducible HSPs in 

order to become refractory to chemotherapy, tolerant to hypoxia, resistant to apoptosis, and to 

suppress antitumor immunity, all the while acquiring the properties of invasiveness and 

metastasis during cancer progression. To date, more than 200 HSP client proteins have been 

identified involving nearly all fundamental cellular activities and processes, including cell 

growth, proliferation, and cell survival (Jego et al 2010). Interestingly, many 

cancer-associated proteins have been reported as HSP clients, likely as a mechanism for 

promoting oncogenic transformation. Therefore, targeting HSPs would result in simultaneous 

inhibition of multiple signaling pathways responsible for modulation of various events 
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involved in cancer progression for a broad range of tumor types, such as neoplastic growth, 

sustained angiogenesis, chemotherapeutic resistance, evasion of cell death, and ultimately, 

invasion and metastasis (Barginear et al 2008).  

Although the exact molecular mechanism(s) of HSP inhibitors have not yet been fully 

determined, a significant number of client proteins are either part of mechanistic studies 

(bench) or under evaluation as part of clinical trials (bedside). For example, histone 

deacetylase (HDAC) inhibitors as novel anticancer agents are found to hyperacetylate Hsp90, 

causing an increase in its binding to an Hsp90 inhibitor now in phase II trials, ultimately 

showing anti-tumor activity in leukemia and prostate cancer (Barginear et al 2008). 

Glucose-regulated protein 78 kD (GRP78), also known as immunoglobulin heavy chain 

binding protein (BiP), is a member of the HSP family of molecular chaperones and serves as 

an unfolded protein response marker. GRP78 is involved in cellular adaptation and survival 

to facilitate tumorigenesis through active interaction with a variety of partners/ligands within 

tumor cells (Dudek et al 2009). On the basis of shared homology with other HSP family 

proteins, GRP78 is also a molecular target of HDAC inhibitors, resulting in the 

phosphorylation and activation of initiating factor 2α (p-IF2α) and an increase in ATF4 and 

C/EBP homologous protein synthesis (Kahali et al 2010), all of which are important for 

progression of certain cancer types. 

Thus, overall, HSPs are implicated in cancer and have been shown to specifically 

interfere with current antitumor therapies that target phenotypic responses like apoptosis, 

necrosis, autophagy, and senescence. Not surprisingly, inhibition of Hsp90’s ATPase activity 

and disruption of ongoing chaperone folding cycles results in dissociation, destabilization, 
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and proteasomal degradation of a variety of client proteins, including the cancer-associated 

targets ErbB1, ErbB2, Bcl-2, Apaf-1, Akt, and MMP-2 (Jego et al 2010; Wang et al 2009). 

Even though clinical trials often show inherent toxicity of Hsp90 inhibitors and strong 

induction of cytoprotective function of Hsp70, a combination of Hsp90 and Hsp70 inhibitors 

with traditional chemo- and/or radio-therapy may provoke tumor regression in a synergistic 

manner. 

Here, we will review studies describing the connection between molecular chaperones 

and tumorigenesis, especially focusing on the roles of the molecular chaperone families 

Hsp90 and Hsp70 (for example, GRP78). We start by reviewing our current understanding of 

the roles of individual chaperone family members in malignant progression and other types 

of diseases. We then focus on available strategies employing specific Hsp90 inhibitors in 

certain types of cancer to alter the Hallmarks of Cancer. Finally, we will evaluate potential 

novel approaches such as combinatorial therapy including inhibitors for Hsp90 and discuss 

future directions to improve the effects of anti-tumor treatment.  
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CHAPTER TWO 

CYTOPROTECTIVE FUNCTIONS OF HSPS 

 

A. HSP Function in Protein Folding and Degradation  

Molecular chaperones are essential for nascent polypeptides or proteins to fold correctly 

and prevent them from degradation and aggregation in an intracellular environment. 

Understanding of the molecular mechanisms of how different proteins synthesized in the cell 

use specific molecular chaperone machinery will provide fundamental implications for both 

translational research and the clinic practice. 

Most heat-shock proteins (HSPs) and their constitutively-expressed relatives are 

ubiquitously expressed under normal conditions to protect cells from the dangerous 

consequences of protein misfolding and aggregation. Highly expressed HSPs are considered 

key components in the cellular protective response to various cytotoxic exposures including 

temperature, hypoxia, inflammation, starvation, radiation, infection, heavy metals, and acidic 

conditions. The induction of HSP expression is at least partially controlled by the specific 

transcription factor heat shock factor 1 (HSF1) and also by other oncogenic signaling 

proteins such as heregulin-HER2-PI3K (Calderwood et al 2006; Workman et al 2007). HSF1 

monomers are complexed with the Hsp90 chaperone in the cytoplasm of cells, rendering both 

proteins functionally inactive. Only under stress-inducing conditions the interaction is 

disrupted, likely through phosphorylation events, and the functional HSF1 trimer induces 

transcriptional upregulation of HSPs (Voellmy et al 2004; de Billy et al 2009; Pirkkala et al 

2001). HSP stimulation allows for an increase in the critical pathways responsible for 
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protecting cells from destruction (e.g. cell death pathways). Importantly, each member of 

HSP family plays a unique role in cytoprotection. Many of these key proteins will be 

discussed in more details in the subsequent sections. 

 

A1. Hsp90: Hsp90α and Hsp90β 

Hsp90 is unique among the chaperones because it is not necessary for the biogenesis of 

most polypeptides; rather, it seems to control aspects of protein activity, stabilization, and 

complex assembly. There are over 200 Hsp90 identified “client proteins” or cellular 

substrates reported to interact with Hsp90, compromising a variety of functional pathways 

for cell growth, proliferation, and survival (Figure 1). Many of these clients are bona fide 

oncoproteins involved in oncogenic signal transduction implicated in tumor progression (for 

an updated list, refer to: http://www.picard.ch/downloads/HSP90interactors.pdf). Hsp90 is 

composed of three functional domains: an amino-terminal ATP binding domain, a charged 

middle linker domain with high affinity for client protein binding, and a carboxy-terminal 

dimerization domain. Hsp90 undergoes modulated nucleotide-dependent cycling of ATP 

binding and hydrolysis, with ultimate release of the modified client protein. Different 

post-translational modifications including phosphorylation, acetylation and S-nitrosylation 

may affect the function of Hsp90. The most prevalent members of the Hsp90 family are 

Hsp90α and Hsp90β isoforms (also called HSPC1 and HSPC3, respectively), which are 

expressed by two distinct genes whose protein products are mainly cytoplasmic. So far only 

Hsp90 α has been reported to stabilize MMP-2 and prevents it from degradation in cancer 

cells through the interaction between the Hsp90α middle domain and the MMP-2 C-terminal  

http://www.picard.ch/downloads/HSP90interactors.pdf
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FIGURE 1. Current therapeutic targeting of the hallmarks of cancer using Hsp90 
inhibitors. Drugs targeting Hsp90 in certain forms of cancer either through competitive 
binding to N-terminal or C-terminal of Hsp90 thereby prevention of ATP-dependent Hsp90 
cycle eventually leading to client proteins degradation. The genes listed are illustrative 
examples implicated in the development of the hallmarks of cancer. There is a vast amount of 
literature reports with different molecular therapeutic targets in vitro and in vivo alone or in 
combination to modulate most of the hallmarks of cancer. So far two hallmarks of cancer 
regarding to Hsp90 inhibitors for the cancer therapy are still under development, which hold 
a promise for future research as potential cancer therapeutics. FNACA, Fanconi anemia 
complementation group A. Akt, protein kinase B. VEGF, vascular endothelial growth factor. 
SDF-1, stroma derived factor-1. IL-8, interleukin-8. IL-6, interleukin-6. ER, estrogen 
receptor. PR, progesterone receptor. HER-2, human epidermal growth factor receptor-2. 
RTKs, receptor tyrosine kinases. MMP-2, matrix metalloproteinases-2. MAPK, 
mitogen-activated protein kinase. 
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hemopexin domain (Song et al 2010).  

Hsp90 inhibition has attracted considerable attention in the past two decades as a 

promising approach for cancer therapy, leading to degradation of multiple oncogenic client 

proteins. A number of compounds and their derivatives have been shown to bind the ATP 

binding pocket of Hsp90, which prevents ATP hydrolysis and blocks protein folding and 

assembly. Instead, Hsp90 inhibition results in the targeting of its client proteins to a 

proteosomal degradation pathway. In addition, molecular mechanisms underlying Hsp90 

translocation to the extracellular matrix and nucleus still remain obscure, even though 

secretion can be observed after stimulation by stressful conditions, growth factors, and 

influenced by phosphorylation and acetylation of the chaperone. Tapia and Morano recently 

discovered a novel targeting event of Hsp90 into the nucleus from the cytoplasm upon 

glucose exhaustion in the yeast. They employed an Hsp90-Green Fluorescent Protein (GFP) 

fusion protein to show nuclear accumulation of Hsp90 was a specific response to transition 

through the shift into quiescence (Tapia et al 2010). In another study, Diehl et al found 

elevated nuclear Hsp90 expression during breast cancer progression, which suggested that 

nuclear Hsp90 could be an indicator of malignancy and a viable target for cancer therapy 

(Diehl et al 2009). Previous studies also indicated both Hsp90 and Hsp23 were involved in 

specific nuclear events. In one study, Hsp90 and Hsp23 were demonstrated to promote 

telomerase activity by enhancing telomerase binding to DNA as well as nucleotide 

processivity (Forsythe et al 2001). In higher eukaryotes, the Hsp90/Hsp70 chaperone 

complex is required for proper delivering p53 and steroid receptors such as glucocorticoid, 

androgen and oestrogen receptors into nucleus thus promoting their DNA binding activities. 
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In summary, these reports shed light on the roles of Hsp90 involved in translocation of client 

proteins into nucleus as part of its chaperone functional cycles. How can nuclear Hsp90 and 

its client proteins be targeted? Searching for specific approach to deliver Hsp90 inhibitors 

into the nucleus of cancer cells becomes an interesting question to be addressed for cancer 

therapeutics. For example, the use of silicon-based drug delivery vectors would be a good 

choice for cancer treatment and imaging, which will facilitate the delivery of multiple 

nano-components to particular cell compartments to achieve site-directed delivery of drugs. 

An in vitro study showed that the internalization of porous silicon microparticles by 

endothelial cells and macrophages is compatible with all the cellular physiological process 

including cell morphology, intracellular transportation, cell cycle and mitosis, cytokine 

secretion, and cell viability (Serda et al 2011).  

 

A2. Hsp70 Family 

Hsp70 family members are not only responsible for protein conformational assembly, but 

also preventing protein misfolding and aggregation during a variety of post-translational 

processes including protein targeting and degradation, membrane translocation, and apoptosis. 

The HspA group of HSPs includes Hsp71, Hsp70, Hsp72, and GRP78 (BiP). The members of 

this Hsp70 family represent the most highly conserved molecular chaperones. They have two 

major functional domains: an N-terminal ATPase-binding domain (ABD) responsible for 

substrate binding and refolding, and a C-terminal peptide-binding domain (PBD) to facilitate 

the release of client protein after ATP hydrolysis.  

The 78-kDa glucose regulated protein (GRP78), also well known as immunoglobulin 
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heavy chain binding protein (BiP), was originally found as a major protein for maintaining 

intracellular homeostasis in endoplasmic reticulum (ER) called the unfolded protein response 

(UPR). High level of GRP78 confers multiple survival advantages to facilitate the 

proliferation of cancer cells through harsh conditions and to acquire chemotherapeutic 

resistance (Gonzalez-Gronow et al 2009; Dong et al 2008; Lee, 2007; Lee, 2001; Li et al 

2006). While it is difficult to detect GRP78 expression in normal cells, over-expression of 

GRP78 can be detected in many tumor cell lines and primary tumors, such as breast and 

prostate cancer cells. In vivo studies demonstrate a critical role of GRP78 in tumor growth, 

metastasis, and angiogenesis in xenograft models and in the Grp78 heterozegous mice with 

partial reduction of GRP78 (Lee, 2007). It has been shown that GRP78 interacts with BH-3 

only proapoptotic protein, Bcl-2 Interacting Killer or Natural Born Killer (BIK, or NBK) and 

specific caspases, such as caspase-7, on the ER membrane, thereby regulating the balance 

between cell survival and apoptosis (Rao et al 2001; Fu et al 2007; Rauschert et al 2008; 

Reddy et al 2003). GRP78 is commonly found inside the ER lumen because of a presumed 

N-terminal ER localization signal. GRP78 can be detected as a cell surface protein in a broad 

variety of tumor cells by global profiling of the cell surface proteins, suggesting cancer cells 

may have evolved a specific mechanism for presenting GRP78 epitopes on the cell surface 

(Gonzalez-Gronow et al 2009; Misra et al 2006; Misra et al 2010).  

Hsp72 is another major heat shock-induced protein capable of protecting cells from 

stressful conditions. Hsp72 can be present at elevated levels in various forms of tumors and 

in many transformed cell lines. It has been shown that the oncogenic potential of Hsp72 is 

confined in its peptide binding domain since the expression of this domain alone was 



www.manaraa.com

 10

sufficient for tumorigenic transformation of Rat-1 cells (Volloch et al 1999). Based on more 

novel findings of roles of Hsp70 from clinical and basic research, Hsp70 targeted therapy is 

clearly an attractive approach for anti-tumor treatment. Considerable progress has been made 

in targeting Hsp70 using small molecule inhibitors in cancer as well as in other protein 

folding diseases. In this review, we will focus on small molecule inhibitors targeting Hsp90.  

 

A3. Hsp60 

In eukaryotes, the chaperonin proteins Hsp60 and Hsp10 are structurally and 

functionally nearly identical to the bacterial GroEL and GroES proteins, respectively. 

Hsp60/GroEL belongs to the molecular chaperones in the alkalai family. GroEL requires the 

lid-like cochaperonin protein complex GroES to function normally to help proteins fold 

correctly. Hsp60 is involved in protein folding after its post-translational import to the 

mitochondria (or chloroplasts in plants). These chaperonins aid the folding process by 

assembling into large complexes to provide specific folding spaces where clients can undergo 

the appropriate intramolecular interactions to obtain the correct three dimensional structure. 

Accumulating data showed alteration of Hsp60 expression in tumor development.  It has 

been demonstrated Hsp60 as an intramitochondrial protein directly interacts with cyclophilin 

D (CypD), a component of the mitochondrial permeability transition pore, thereby preventing 

CypD-dependent cell death through formation of a multiple complex with Hsp90, and tumor 

necrosis factor receptor-associated protein-1 in tumors (Ghosh et al 2010). However, Hsp60 

has also been found in the cytosol, cell membrane, vesicles, extracellular space as well as 

serum (Cappello et al 2011). The elucidation of molecular mechanism of Hsp60 distribution 
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in different cellular compartment may provide a novel target for cancer therapy. For example, 

Chun et al demonstrated the cytosolic Hsp60 promoted the TNF-α-mediated activation of the 

IKK/NF-κB survival pathway via direct interaction with IKKα/β in the cytoplasm. 

Mechanism for IKK activation by the cytosolic Hsp60 was showed to work via up-regulating 

the activation-dependent serine phosphorylation in a chaperone-independent manner, which 

indicated the role of Hsp60 for tumor cell survival may work through NF-κB pathway (Chun 

et al 2010).  

 

A4. Hsp27 and the small HSPs 

Protein folding also involves the Hsp27 family, known as the small HSPs (sHSPs, 15-30 

kDa). They assemble into large aggregates that mediate holding and folding in an 

ATP-independent manner, which differs from the larger ATP-dependent molecular 

chaperones (e.g. Hsp90). The common functions of sHSPs are chaperone activity, 

thermotolerance, inhibition of apoptosis, regulation of cell development, and differentiation 

(Garrido et al 2006). Hsp27 belongs to a family of sHSPs that includes ubiquitin, 

α-crystallins, Hsp20, and others. sHSPs have significant sequence homology and biochemical 

properties in common including phosphorylation and oliogmerization. Hsp27 contains a 

central domain called α-crystallin, which is universally conserved among all the sHSPs 

family members. The N-terminus is made of a less conserved region, called WDPF motif 

representing amino acid (16-19 residues) tryptophan, aspartate, proline, and phenylalanine, 

which is necessary for chaperone-like activity of sHSP, since substrate binding occurs 

through hydrophobic interactions (Takeuchi 2006). The WDPF motif affects the Hsp27’s 
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oligomerization, which is regulated by the phosphorylation of the protein. Hsp27 may serve 

as a differentiation marker since it is induced in the early stages of differentiation, decreasing 

when a cell divides.  

Hsp27 enhances the activation of the nuclear factor-κB (NF-κB) pathway, which 

controls many pathophysiological processes, such as tumor cell proliferation, inflammation, 

drug resistance, and stress response (Romani et al 2007; Andrieu et al 2010). The 

cytoprotective properties of Hsp27 result from its ability to modulate reactive oxygen species 

(ROS) and to raise glutathione levels in its reduced (non-oxidized) form.  

 

A5. Hsp40 family   

Hsp90 and Hsp70 are relatively thoroughly investigated for their roles in molecular 

mechanisms underlying tumor pathogenesis. However, the role of DnaJ/Hsp40 family in 

physiological and pathological conditions is still to be further investigated. Because 

hydrolysis of ATP is essential for Hsp70s activities, DnaJ/Hsp40 proteins stabilize Hsp70s 

interaction with client proteins through binding to the ATPase domain of Hsp70 particularly 

with its conserved tripeptide of Histidine-Proline-Aspartic acid (HPD) motif in the J domain 

(Tsai J et al 1996; Qiu et al 2006). The J domain is usually located at the N-terminal region 

of the DnaJ/Hsp40 proteins and composed of a 70-amino acid sequence forming four helices 

and a loop region containing the HPD motif between helices II and III. Depending on the 

presence of the Gly/Phe-rich region (G/F) with/without the cysteine repeats, DnaJ/Hsp40 

proteins can be categorized into type I, II and III.  

Several studies have shown that several Hsp40 family members including hTid I (class 
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DNAJA3) and HLJ 1 (class DNAJB4) are associated with the regulation of tumor 

progression (Kim et al 2004; Wang et al 2005). In addition, some DnaJ family members have 

unique domains which display the functional diversity of these proteins. For example, the 

mammalian DnaJ protein ERdj5, as a novel endoplasmic reticulum (ER) chaperone, has an 

unique combination of domains including a danj, a protein disulfide isomerase-like and a 

thioredoxin domain (Cunnea et al 2003; Hosoda et al 2003). Recently, Ushioda et al reported 

that ERdj5 has a reductase activity; it can cleave disulfide bonds of misfolded proteins and 

accelerates ER-associated degradation (ERAD) through its interactions with ER 

degradation-enhancing α-mannosidase-like protein (EDEM) and BiP/GRP78 (Ushioda et al 

2008 & 2011). Thomas et al reported that ERdj5 enhanced apoptosis in neuroblastoma cells 

utilizing its dnaj domain to block the ER stress-induced phosphorylation of eukaryotic 

translation initiation factor 2α (eIF2α) and the subsequent translational suppression (Thomas 

et al 2009). The compromised UPR was observed in ERdj5-overexpressing ER-stressed cells. 

This was due to inhibition of eIF2α phosphorylation which impaired neuroblastoma cell 

survival under ER stress conditions. These findings indicated that ERdj5 reduced 

neuroblastoma cell survival through negative regulation of the UPR, providing the possibility 

that this chaperone protein could be a novel target for cancer therapy. 

 

A 6. HOP 

Hsp70/Hsp90 organizing protein (HOP) is one of the most extensively studied 

co-chaperones, which is able to directly associate with both Hsp70 and Hsp90. The current 

dogma proposes that HOP functions primarily as an adaptor that directs Hsp90 to 
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Hsp70-client protein complexes in the cytoplasm (Odunuga et al 2004). However, mounting 

studies indicate that HOP can also associate with a number of Hsp90-independent complexes 

including the intriguing role as a receptor for prion proteins (Martins et al 1997; Romano et 

al 2009). 

The diverse location of HOP inside of the cell, the versatility of tetratricopeptide (TPR) 

domain, coupled with the association with various other cellular Hsp90-independent proteins 

uncovered novel roles of HOP. For example, Marozkina et al recently showed HOP is a 

critical target of S-nitrosoglutathione (GSNO), and its S-nitrosylation by GSNO inhibited the 

association of HOP with DeltaF508 cystic fibrosis (CF) transmembrane conductance 

regulator (CFTR) in the ER. This effect was necessary and sufficient to mediate 

GSNO-induced cell-surface expression of DeltaF508 CFTR. HOP siRNA recapitulated the 

effect of GSNO on DeltaF508 CFTR maturation and expression. In summary this study 

demonstrated that GSNO corrects DeltaF508 CFTR trafficking by inhibiting HOP expression, 

and the combinational therapies targeting different mechanisms of action may have additive 

treatment beneficial for CF (Marozkina et al 2010). 

 

B. Functional Role of HSPs in Cancer Development 

Molecular chaperones are essentially housekeeping proteins as they function to: 1) assist 

nascent protein folding, 2) prevent misfolding, and 3) reduce aggregation of unfolded or 

misfolded proteins during stressful conditions. In transformed cells, mechanisms for 

controlling protein aggregation are critical for preventing cell death that can be induced by 

the increase in cell stress and the ultimate loss of cellular homeostasis. Interestingly, these 
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pathways are interrelated with an underlying theme: cancer initiation and progression. A list 

of major key cancer-associated mechanisms is discussed in this section.  

 

B1. Diversified roles of HSPs in cell death pathways  

As transformed cells develop, their microenvironment plays an important role in tumor 

cells ability to progress to a more aggressive phenotype. During this time of adaptation to 

their surrounding environment, tumor cells develop survival capabilities through several 

known and unknown mechanisms in order to acclimate to stressful conditions that 

accompany tumor progression, including inflammation, hypoxia, radiation, and 

chemotherapy. HSPs can protect tumor cells not only from apoptosis induced by a variety of 

diverse stimuli but also from type II programmed cell death (i.e. autophagy), replicative 

senescence, and mitotic catastrophe. 

 

B1.1 Apoptosis 

HSPs regulate the intrinsic apoptotic signaling pathway (mitochondrial). Hsp90 and its 

co-chaperones also modulate and mediate tumor cell apoptosis through interacting with the 

Akt kinase, tumor necrosis factor (TNF) receptor, HER2/ErbB2 receptor, and transcription 

factors like NF-κB. However, Hsp90 plays a more significant role during oncogenic 

transformation than simple inhibition of apoptosis. Using genetic and pharmacological 

techniques, Hsp90 has been shown to facilitate numerous transient low-affinity 

protein-protein interactions that were previously unknown, partly because these client 

proteins become actively involved in oncogenic transformation (Basso et al 2002; Vanden et 
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al 2003; Chen et al 2002; Xu et al 1999; Zhang et al 2008). For instance, wild type SRC 

tyrosine kinase needs only limited assistance from the Hsp90 chaperone machinery for 

assembly into its mature and functionally active protein; yet v-SRC mutants demonstrated an 

uncommonly stable interaction with Hsp90 (Oppermann et al 1981; Brugge et al 1983). This 

aberrant interaction between chaperone and mutated client protein was later shown to be 

essential for acquiring and maintaining the transforming activity of v-SRC in tumor cells (Xu 

et al 1993; Whitesell et al 1994). Because of the accumulation of such mutant proteins in 

tumor cells, novel phenotypes may emerge as a result of alterations in the levels of unbound 

or uncomplexed Hsp90, which can be virtually eliminated by environmental stress and/or 

tumorigenic transformation. Numerous in vitro studies suggested an important role for HSPs 

in the regulation of caspase activation because they were able to block cell death at different 

stages by interaction with a number of apoptosis-related client proteins.  

Hsp27 is actively involved in the apoptotic pathway. Hsp27 interacts with the outer 

mitochondrial membrane and sequesters cytochrome C, which was released into the cytosol 

from the mitochondria, thereby preventing the formation of the apoptosome and the 

activation of procaspase-9. In addition, knockdown of Hsp27 by siRNA induces apoptosis 

through activation of caspase-3. 

Hsp70 is a negative regulator of the intrinsic apoptotic pathway and can inhibit cell death 

at different stages. At a premitochondrial stage, Hsp70 suppresses stress inducing signals 

through binding to c-Jun N-terminal Kinase (JNK1) via an ATPase domain independent 

manner (Park et al 2001; Mosser 2000), as well as binding to nonphosphorylated protein 

kinase C (PKC) and AKT (Gao et al 2002), resulting in their stabilization, at the 
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mitochondrial stage, Hsp70 prevents Bax translocation to inhibit mitochondrial membrane 

permeabilization (Stankiewicz et al 2005). Finally, Hsp70 functions at the post-mitochondrial 

level by interacting with the apoptosis-inducing factor (AIF) and the apoptosis protease 

activating factor-1 (Apaf-1) or by protecting essential nuclear proteins from caspase-3 

cleavage (Li et al 2000). 

 

B1.2 Autophagy  

sHSPs are reported to act at different steps in protein quality control with differential 

potential to prevent aggregation of insoluble mutant proteins. Aggregation of polyglutamine 

proteins results in the development of neurological disorders such as Huntington disease and 

spinocerebellar ataxias. One of the HSP family members, HSP7 can prevent toxicity of 

polyglutamine-containing proteins in cells by assisting the loading of misfolded proteins or 

small protein aggregates into autophagosome. However, the mechanism of heat shock 27kDa 

protein family, member 7 (HSPB7) involvement with the autophagic machinery has yet to be 

investigated. Recently, Jiang et al reported Hsp90-mediated inactivation of NF-κB signaling 

pathway turned protective autophagy into apoptosis in human leukemia NB4 cells when 

treated with sodium selenite, which was an essential dietary component for animals and 

humans considered as a protective agent against cancer. In their study, reduction of Hsp90 in 

selenite-treated NB4 cells attenuated IKK/NF-κB signaling pathway and led to inhibition of 

autophagy-related gene (Atg) 6 expression (also known as Beclin 1) and vesicular 

accumulation of microtubule-associated proteins 1 light chain 3 (LC3), both of which are the 

markers of autophagic activity, thereby activating apoptotic pathway in these cancer cells. 
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These findings suggested that the potential role of overexpression of Hsp90 may be served as 

a protective factor for drug resistance in some types of cancer (Jiang et al 2011). 

 

B1.3 Necrosis, Telomerase and ROS  

Small HSPs, especially Hsp27 and α-crystallin, can protect cardiomyocytes from 

ischemia-induced necrosis both in vitro and in vivo, while the larger Hsp70 protein protects 

human β-cells from nitric oxide-induced necrosis via rescue of mitochondria functions. The 

potential mechanisms of this phenomenon may be associated with inhibition of the stress 

kinases JNK and p38 by Hsp70, indicating that these kinases are targets of the anti-necrotic 

effect of Hsp70 in the myocardium. Although the molecular mechanisms of HSPs in 

protection of cancer cells from ischemia-induced necrosis has not yet been reported, it may 

be interesting to investigate the effect of Hsp70 on JNK and p38 regarding to higher levels of 

expression of Hsp27 and/or Hsp70 in tumor versus normal tissue. Akalin et al showed Hsp90 

chaperone-mediated enhancement of telomerase assembly contributed to tumorigenic 

conversion. In the same study, telomerase activity was dramatically increased as prostate 

cancer cells progressed to tumorigenic state in vitro using an appropriate prostate cancer 

model system within a similar genetic background (Akalin et al 2001). The interactive 

relationship among stress, telomeres, telomerase and molecular chaperones needs to be 

further examined. Therefore, telomerase inhibition as a potential adjuvant therapy to 

anti-tumor approaches becomes appealing if Hsp90 inhibition can affect telomerase activity 

at low doses without detrimental effects. In addition, it has shown that chronic inhibition of 

Hsp90 using an established antibiotic inhibitor, radicicol, resulted in telomere shortening and 
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subsequent cell death through the generation of reactive oxygen species (ROS) through the 

deregulation of the NOS pathway with a significant increase in NOS-dependent O2
- radicals 

(Compton et al 2006).     

 

B2. Angiogenesis  

High levels of HSP expression are important for cancer cells to survive in a hypoxic 

tumor microenvironment, which is generally attributed to their effects on the transcription 

factor HIF-1α by mediating its stabilization and/or aggregation. HIF-1 is a heterodimer that is 

composed of both HIF-1α (120 kD) and HIF-1β (91-94 kD). HIF-1α is stabilized by Hsp90 in 

hypoxic conditions and normally degraded by prolyl hydroxylase (PHD), the von 

Hipple-Lindau (VHL)/Elongin-C/Elongin-B E3 ubiquitin ligase complex through 

proteasomes dependent manner ( Liu et al 2007; Isaacs et al 2003; ).  

Hsp90 plays a critical role in structural modulation of oncoproteins including Akt, 

HER-2/ERBB2, RAF1, eNOS, BCR-ABL and mutated p53 (Kim et al 2008; Bohonowych et 

al 2010). Hypoxia and other stressful stimuli induce HIF expression as well as subsequent 

cellular response, resulting in a cascade of signaling events that induce VEGF expression and 

angiogenesis. Importantly, several critical mediators in this angiogenic signaling pathway, 

including HIF, VEGF-receptor and IL-8/NF-κB are dependent upon Hsp90 for their function. 

Receptor Tyrosine Kinase (RTK) activation also potentially induces HIF expression via 

Akt/mTOR -mediated translation pathway. RTKs additionally transactivate Ephrin type-A 

receptor 2 (EphA2), a novel Hsp90 client protein known to be involved in tumor 

angiogenesis. In addition, HIF also promotes the expression of several RTK ligands, for 
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example, hepatocyte growth factor (HGF) and TGF-α, as well as RTK receptors including 

endothelia growth factor receptor (EGFR) and insulin-like growth factor receptor (IGFR), 

thereby reinforcing these signaling interactions. Moreover, Hsp90 plays a role in 

NF-κB-induced VEGF expression and regulates downstream effectors, including 

Akt-mediated eNOS phosphorylation. Given that Hsp90 is required for activation of VEGFR, 

Akt, eNOS, and NFκB, Hsp90 inhibitors can be employed to target multiple signaling 

molecules of angiogenesis pathway, as demonstrated by the potent suppression of VEGF and 

NO release both in vitro and in vivo with the overall outcome of inhibiting tumor 

angiogenesis (Bohonowych et al 2010).  

Lang et al showed that Hsp90 inhibitors can also disrupt HIF-1α/Signal Transducer and 

Activator of Transcription-3 (STAT3) mediated autocrine loop for IL-6 and IGF-I in 

pancreatic adenocarcinoma cells and the highly metastatic L3.6p1 pancreatic cells by direct 

disturbance with the functions of HIF-1α and STAT3. In the same study, ELISA data also 

demonstrated a marked reduction of VEGF-A expression after treatment with 

17-allylamino-geldanamycin (17-AAG), a Hsp90 inhibitor (Lang et al 2007). In tumor cells, 

STAT3 is commonly activated and blocks apoptosis as wells promotes cell transformation. 

Much of the known roles of Hsp90 in angiogenesis is shown schematically in Figure 2. 
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FIGURE 2. Hsp90 inhibitors targeting angiogenic signaling network in cancer. Hsp90 
mediates multiple channels of angiogenesis signaling in cancer cells through its interaction 
with multiple client proteins including HIF-alpha, RTKs, AKT, and NF-κB. Traditional 
oncogenic angiogenesis pathway works through HIF-dependent manner, which can be 
activated either by direct stimulant, hypoxia or through phosphorylation of several tyrosine 
kinase receptors (RTKs) thereby activating downstream HIF-1 α-associated pathways 
including RTKs-PI3K/Akt-HIF-alpha-VEGF and RTKs-MAPK-HIF-alpha-VEGF. In 
addition, recruitment of bone marrow derived cells (BMDC) stimulates a proangiogenic 
factor IL-8 secretion to activate NF-κB-dependent VEGF expression. Recently, several 
studies showed NF-κB induced HIF-alpha expression in transformed cells and canonical 
NF-κB pathway is required for inflammatory gene expression when exposed to hypoxia 
(Qiao et al 2010; Fitzpatrick et al 2011). Over all these findings indicate that a complicated 
signaling network intertwined for collaboration of angiogenesis in cancer, which provides a 
strong evidence for Hsp90 inhibitors to be considered as multi-targets-inhibition strategy for 
clinical trial.   
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B3. Invasion and Metastasis 

Over-expression of heat shock factor protein 1 (HSF1) and HSPs in tumor cells displayed 

an increasing trend to invade tumor microenvironment and metastasize to distant sites 

(Ciocca et al 2005; Hoang et al 2000), though molecular mechanisms have not yet fully 

understood. In addition to transcriptional regulation of HSPs expression, recent data also 

showed that HSF1 is an important facilitator for tumor progression. Accumulating research 

suggests that highly expressed downstream factors of HSF1, including Hsp27 and Hsp70, in 

tumor cells are at least partially responsible for the invasive and/or metastatic properties of 

tumors.  

Hsp90 was detected on the cell surface and in conditioned medium of tumor cells, where 

it acted as a molecular chaperone to assist in the activation of matrix metalloproteinase-2 

(MMP-2), working with a complex of co-chaperone proteins including Hsp90 organizing 

protein (HOP) and p23, leading to elevated tumor invasiveness. Accumulating evidences 

indicate that Hsp90 especially Hsp90α can be expressed and function in the extracellular 

space acting as a molecular chaperone that assist in the maturation of pro-MMP2 to its active 

form by stimulating propeptide cleavage. Activated MMP2 protease digests many of the 

major extracellular matrix (ECM) components surrounding tumor tissue including 

fibronectin, laminins, collagens, etc thereby facilitating tumor invasion process. As an 

ubiquitously expressed cytosolic protein in higher eukaryotes, Hsp90α also works in other 

cellular compartments in different cell types and specific disease conditions playing 

distinctive biological functions.  

Several cochaperones including p23 and HOP were found in the conditioned medium of 
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HT-1080 fibrosarcoma cells acting in concert with Hsp90α to activate MMP2. In addition, 

p23 was also shown to promote tumor progression and poor prognosis in breast cancer by 

increasing metastatic potential through the upregulation of several genes involved in 

metastasis and chemotherapeutic resistance by enhancing Akt signaling pathway, which plays 

a critical in tumorigenesis. These findings opened a new door to target extracellular Hsp90 

and related chaperone complex for cancer therapy. However, there are still several important 

questions that need to be addressed before we become excited about these novel findings. For 

example, neutralizing antibody against extracellular Hsp90 only affects the regulation of cell 

migration and metastasis but did not affect tumor cells proliferation both in vitro and in vivo. 

Two possible explanations can be considered. First, Akt/PI3K signaling pathways are 

involved in cell survival and metastasis. Both of them are Hsp90 client proteins. Hence 

blockage of Hsp90 activity seems to activate apoptosis through attenuation of Akt/PI3K 

oncogenic pathways. Second, heregulin-induced HER2 phosphorylation in tumor cells can be 

ameliorated by neutralizing antibody against extracellular Hsp90 which inactivates 

downstream kinase signaling pathways, rearranges cytoskeleton and subsequent cell 

migration. These data provided molecular mechanistic evidence for the multifaceted Hsp90 

as a metastasis promoter during the cancer progression and suggested targeting Hsp90 for the 

prevention of cancer metastasis.   

 

B4. Chemotherapeutic Resistance 

Since HSPs’ cytoprotective effect is essential for cancer cell survival, it is not surprising 

that HSPs targeted therapy is considered an interesting pharmacological intervention stategy 
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for cancer treatment. To that end, there are currently 13 Hsp90 inhibitors entered into clinical 

evaluation in cancer patients (Trepel et al 2010, Table 1). Most studies to identify Hsp90 

inhibitors have concentrated on ligands binding to the N-terminal ATP-binding site, which 

disrupts Hsp90’s ATPase activity and the ongoing ATP-dependent folding cycle. Because this 

cyclic event requires multiple co-chaperone proteins, inhibition results in the destabilization, 

ubiquitination, and ultimately proteasomal degradation of the client proteins, causing the 

disruption of multiple oncogenic signaling pathways simultaneously.  

It has recently been confirmed there is an association of the GRP78 chaperone with client 

proteins of the Hsp70-Hsp90 complex, namely HER2, HER3, Akt and androgen receptor 

(AR) were observed in prostate cancer. The association of AR and GRP78 expression in 

untreated prostate cancer is novel and highlights the potential implication of targeting GRP78 

as a novel molecular therapy in prostate cancer in both the hormone-naïve and 

castrate-resistant states. However, one of the critical problems with Hsp90 inhibition is the 

accumulation of Hsp70 after treatment, which can reduce cell death induced by Hsp90 

inhibitors and therefore buffer their anti-tumor efficacy in the clinic. Those disappointing 

results may be related to inherent Hsp90 inhibitors toxicity and induction of Hsp70 by 

calcium mobilization and activation of TGF-β signaling pathway. Thus, Hsp70 inhibition 

combined with anti-Hsp90 compounds could be an interesting strategy to eliminate the toxic 

side-effects of Hsp90 inhibitors and enhance synergistic efficacy for the treatment of cancer. 

Currently compounds designed for inhibition of Hsp70 function are targeting different 

domains by interfering at specific steps within the chaperone dynamic cycle. For example, 

15-deoxyspergulain (15-DSG) possibly interacts with the C-terminal EEVD motif  
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Table 1. Hsp90 Inhibitors 

Hsp90 Inhibitor Interaction Site References Source 

Geldanamycin  N-terminal ATP-binding Supko 1995; Park 2003;Kim 2009; Samuni 2010 benzoquinone ansamycin antibiotic 

17-AAG (Tanespimycin) N-terminal ATP-binding Janin 2005; Grem 2007; Erlichman 2009 Geldanamycin analog 

17-DMAG N-terminal ATP-binding Palacios 2010 Geldanamycin analog 

Retaspimycin hydrochloride N-terminal ATP-binding Hanson 2009; Dewaele 2008 IPI-504 

IPI-493 N-terminal ATP-binding Porter 2009; Croasdell 2010 Ansamycin class 

Radicicol N-terminal ATP-binding Delmotte 1953; Soga 2003 Macrocylic antifungal 

Purine-scaffold inhibitors N-terminal ATP-binding Zhang 2010 CNF-2024/BIIB021 

Shepherin N-terminal ATP-binding Plescia 2005 Peptidomimetic antagonist 

Pyrazoles (CCT-018159) N-terminal ATP-binding Rowlands 2004; Cheung 2005; Barril 2006; Sharp 2007 Antifungal antibiotic 

PU24FCI N-terminal ATP-binding Vilenchik 2004 Synthetic inhibitor 

SNX-5422(mesylate) 

 

    

N-terminal ATP-binding Huang et al 2009; Fadden 2010 Synthetic inhibitor 

STA-9090 N-terminal ATP-binding Lin 2008;Wang 2010 Resorcinol triazole 

NVP-AUY922 N-terminal ATP-binding Eccles 2008;Tauchi 2011;Gaspar 2010 Synthetic inhibitor 

Oxime derivative KF58333 N-terminal ATP-binding Soga et al 2001; Kurebayashi 2001 Synthetic inhibitor 

Novobiocin C-terminal ATP-binding* Donnelly 2008; Yang 2003; Nordenberg 1992 From streptomyces  

Coumermycin C-terminal ATP-binding Marcu 2000 From streptomyces

25 

*The C-terminal ATP-binding site is putative  
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to stimulate the steady-state ATPase activity of the constitutively expressed Hsc70 without 

affecting Hsc70 functions that require DnaJ (Brodsky et al 1999). In addition, 15-DSG was 

also found to bind Hsp90. Hsc70s are the constitutive cellular analogues of the 

stress-inducible Hsp70 molecular chaperones, 70-kDa heat shock proteins that bind and 

release polypeptide substrates concomitant with ATP-dependent dynamic cycle (Hartl 1996).  

Nadeau et al utilized affinity capillary electrophoresis to obtain Kd values for DSG. Kd 

values are 4 µM for DSG binding to Hsc70 and 5 µM for DSG binding to Hsp90. (Nadeau et 

al 1994) Recently, a small molecule inhibitor Pifithrin-µ (2-phenylethynesulfonamide or 

phenylacetylenylsulfonaminde, PES) was reported to interact with the substrate binding 

domain of Hsp72 and to reduce the association between Hsp72 and its cochaperones Hsp40 

and Bcl2-associated athanogene-1(BAG-1) (Leu et al 2009). Pifithrin-µ is an inhibitor of p53 

binding capability and also an antiapoptotic protein. It can directly prevent p53 binding to 

mitochondria as well as to Bcl-xL and Bcl-2 as a temporary inhibition of p53 transcriptional 

activity to protect normal tissues from side effects by chemotherapy without affecting 

p53-mediated transactivation in cancer treatment. Moreover, in vivo study also indicated that 

administration of Pifithrin-µ inhibited spontaneous tumor development and enhanced 

survival in the Eµ-Myc induced-lymphomagenesis mouse model (Leu et al 2009). However, 

it would be interesting to investigate the effect on Hsp90 activity using Pifithrin-µ because 

previous study showed dual siRNA knockdown of Hsc70 and Hsp72 led to the proteasomal 

degradation of the Hsp90 client proteins CRAF, CDK4 and ERBB2 in human colon and 

ovarian cancer cells (Powers et al 2008). Regarding the multiple functions of Hsp70 protein 

for tumor growth, small molecule inhibitors targeting Hsp70 represents a promising approach 
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to selectively target critical chaperone involvement in multiple oncogenic signaling 

pathways.    

 

C. Roles of HSPs in Other Diseases  

 Adaptation and survival to changeable environmental states requires a cell’s ability to 

sense misfolded proteins and to activate the corresponding protective response, signaling 

pathways, and functional molecular chaperones to restore intracellular homeostasis. Failure 

to do so results in a cell that is poorly adapted to proteotoxic stimuli, so that when 

dysfunctional aggregation of proteins occurs, the consequence is protein accumulation rather 

than degradation of protein complexes. There are many protein conformation diseases 

including cancer, neurodegenerative disease, aging, and chronic metabolic disease, some of 

which will be discussed.  

 

C1. Aging and Senescence  

Misfolding and aggregation of proteins are now considered as common molecular events 

in many human diseases. Conformational diseases have in common that aggregation-prone 

proteins cause “gain-of-function” proteotoxicity and lead to several diseases due to improper 

trafficking of proteins, misfolding or malfolded proteins, and inappropriate degradation of 

proteins. Aging and protein synthesis homeostasis are intertwined closely. The molecular 

interactions between the genetic pathways that regulate life span and inhibition of 

proteotoxicity are promoted partially by factors including heat shock factor-1 (HSF-1), 

molecular chaperones, and DAF-16 (a forkhead transcription factor found in C. elegans), 
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which is closely related to mammalian transcriptional factor forkhead box O3A (FOXO3A).  

HSF-1 is a transcription factor binding to Hsp40/Hsp70 and Hsp90 in a complex 

formation under unstressed conditions, where Hsp90 is found as a suppressor of HSF-1 

activation. Upon stress, HSF-1 forms trimers and becomes transcriptionally active because 

Hsp90 needs to compete with misfolded proteins and dissociates from HSF-1. With age in 

animal models, HSF-1 level does not change but a decline in the activation and binding of 

DNA binding motif (Heydari et al 2000). Results from cultured cells suggest that the 

age-related reduction in Hsp70 protein expression is due to decreased binding of HSF-1 to 

the heat shock element (HSE) and declined Hsp70 transcription level. Overall, these 

reductions of Hsp proteins and increase in misfolded protein all contribute to the damage of 

molecular chaperone functions with age. (Horowitz et al 2007) 

Dauer formation abnormal (DAF)-16 is a key FOXO transcription factor that regulates 

innate immunity in Caenorhabditis elegans (Singh et al 2009). The human FOXO3A has 

been linked to inflammation in response to infection. Recently, variants in FOXO3A have 

consistently been confirmed with human longevity in different ethnic populations worldwide 

(Flachsbart et al 2009). FOXO3A encodes an evolutionarily conserved key regulator of the 

insulin-IGF1 signaling pathway that is known to influence metabolism and lifespan in model 

organisms including worms, flies, mice in addition to human (Ziv et al 2011). Like FOXO3a, 

the activity of DAF-16 is tightly regulated by a wide variety of external stimuli such as 

nutrients, oxidative stress, and heat stress. Both HSF-1 and DAF-16 are essential partners and 

play in concert to promote longevity and to maintain protein homeostasis (Kleindorp et al 

2011). 
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C2. Neurodegenerative Disease  

Accumulation and deposition of misfolded proteins in the brain (inside and outside 

neurons) and selective neuronal loss in the central nervous system (CNS) have been 

implicated as a common molecular mechanism of various neurodegenerative diseases 

including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis 

(ALS), and the polyglutamine (PolyQ) diseases. Hsp27 protects motor neurons from 

apoptosis induced by mechanical injury likely through intervention between cytochrome C 

release and caspase-3 activation. Hsp70 has also been reported to associate with 

polyglutamine proteins thereby prevention of its aggregation in vivo (Nagai et al 2010). The 

PolyQ diseases are a group of nine hereditary neurodegenerative diseases, including 

Huntington's disease (HD) and various types of spinocerebellar ataxia (SCA), which are 

caused by abnormal expansions of the polyQ stretch (>35-40 repeats) in unrelated 

disease-causative proteins. Misfolding and aggregation of the polyQ protein are the most 

ideal therapeutic targets because they are the most upstream events in the pathogenic 

progression, so that therapeutic approaches focusing on chaperones to prevent protein 

aggregation and assist in the refolding of misfolded proteins, are being extensively studied. 

Actually a variety of molecular chaperones such as Hsp70 and Hsp40 have been 

demonstrated to exert therapeutic effects against various experimental models of the polyQ 

diseases (Turturici et al 2011). Autosomal recessive juvenile Parkinsonism (ARJP) is caused 

by parkin gene mutations, where parkin protein cooperates with Hsp70 and the co-chaperone 

the E3 ubiquitin ligase C-terminus of Hsc70-interacting protein (CHIP) to suppress 

Parkin-associated endothelin receptor-like receptor (Pael-R) function (Takahashi et al 2003). 
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CHIP is believed to be a central player in the cellular triage decision, as it links the molecular 

chaperones Hsp70/Hsc70 and Hsp90 to the ubiquitin proteasomal degradation pathway.  

Loss of function of parkin, an ubiquitin ligase, is responsible for AR-JP. Pael-R was 

identified using a yeast two-hybrid system and identified as a putative G protein-coupled 

receptor protein is an authentic substrate of parkin (Takahashi et al 2003). It is thought to 

accumulate abnormally following loss of parkin activity, causing neurodegeneration of nigral 

dopaminergic neurons in AR-JP patients. Pael-R located in the ER membrane and promoted 

ER stress-induced cell death through protein degradation and the ubiquitin-proteasome 

pathway. When overexpressed in cells, this receptor becomes unfolded, insoluble, and finally 

ubiquitinated. Accumulation of the insoluble Pael-R leads to ER stress-induced cell death. 

Parkin specifically degrades the unfolded Pael-R, preventing cell death induced by the 

aggregation of unfolded Pael-R (Dusonchet et al 2009). 

  

C3. Kidney Diseases 

The role of HSPs in chronic kidney disease (CKD) is relatively limited, though Hsp72 

inhibits the proliferation and apoptosis in tubular cells in rats, decreases the accumulation of 

fibroblasts and type I collagen in renal parenchyma, thereby delaying the fibrotic process. 

Elevated Hsp90α in children with CKD indicates activated oxidative stress and inflammation 

in CKD, which may ultimately trigger atherosclerosis. Clearly much more detailed molecular 

and cellular analysis is needed, but current data suggests that the intracellular forms of Hsp70 

slowed the progression of CKD through Hsp70’s anti-apoptotic and cytoprotective functions. 

A variety of HSPs have shown their differing roles in CKD by protecting against stress 



www.manaraa.com

 31

conditions (Hsp70 and Hsp27), serving as a predictor of the cell damage (Hsp90), or acting 

detrimentally on kidney function, glomerular necrosis, and anuria (Hsp60 and anti-Hsp60). 

Thus, there is some indication that chaperones play an important role in CKD, although the 

exact mechanistic functions attributed to each HSP still remain to be elucidated. 
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CHAPTER THREE 

THERAPEUTIC POTENTIAL OF HSP INHIBITION 

 

A. Targeting Hsp90-mediated transformational signaling pathways in malignant cells 

will comprehensively affect all the classic hallmarks of cancer progression.  

Hanahan and Weinberg have proposed the six hallmarks of cancer a decade ago to 

provide a logical and solid framework for understanding the biology of cancer (Hanahan et al 

2000). With considerable progression made in cancer research after this publication, two 

emerging hallmarks including reprogramming of energy metabolism and evading immune 

destruction have become additional highlights in the study of tumorigenesis. In addition, two 

enabling characteristics including tumor-promoting inflammation as well as genome 

instability and mutation have been proved to enhance the six core and emerging hallmark 

capabilities (Hanahan et al 2011). More importantly, in clinic pathological term 

“desmoplasia” initially describing the growth of fibrous or connective tissue around the 

tumor lesion has been proven and investigated in the mechanistic study of tumor progression, 

which further complets our overall consideration of cancer cells not as an “isolated island”, 

which means they have to communicate with and depend on surrounding non-cancerous cells 

to facilitate tumor microenvironment. Microcommunity of cancer is not simply understood 

by passive composition of bystanders but a dynamic microenvironment communication of 

multiple cell types reciprocally interacting with each other to facilitate tumor progression, 

especially tumor-associated fibroblasts or cancer-associated fibroblasts (TAFs or CAFs), a 
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major and critical component of tumor stroma tissue (Tlsty et al 2006; Beacham et al 2005; 

Kunz-Schughart et al 2002).  

Appreciation of these critical hallmarks and characteristics for the development of 

cancer will definitely modulate the future direction of cancer research and promote our 

exploration of anti-tumor therapy with potential paradigm-shifting strategies (Hanahan et al 

2011). As shown in Figure 1, Hsp90 plays a multifaceted part involved in the acquisition and 

development of the hallmarks of cancer through interacting with many client proteins 

responsible for essential oncogenic transformation. If these client proteins fail to bind a 

specific ligand or receptor to form a meta-stable chaperone-client complex, then they are 

subjected to ubiquitination and finally degraded by proteasome, providing the major 

theoretical basis of pharmaceutical inhibition of Hsp90-mediated oncogenic signaling 

pathways. For example, Hsp90 inhibitor was reported to inhibit angiogenic signaling 

pathways either through HIF-dependent or -independent manner in the tumor vascularization 

process.  

Tumor cells activate endothelial cells through secretion of various proangiogenic growth 

factors including VEGF, COX-2, Ang-2, HGF, FGF as well as Tie-2, which are regulated by 

hypoxia through the hypoxia inducible factor (HIF) and bind to corresponding RTK on 

dormant endothelial cells. Once endothelial cells become activated, they migrate and 

proliferate to form novel branches from the preexisting blood vessels by secreting the matrix 

metalloproteinases to detach from the extracellular matrix and basement membrane (Harris 

2002). Major anti-angiogenic effects of Hsp90 inhibitors are most likely associated with 

down-regulation of HIF activity, since the half life of HIF-1α is also controlled in an 
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oxygen-independent way by the competitive binding of either Hsp90 to stabilize the protein, 

or the anchoring protein Receptor for activated C kinase 1 (RACK1) to interact with Elongin 

C and mediate prolyl hydroxylase domain protein 2 (PHD2) and von Hippel-Lindau protein 

(VHL)-independent ubiquitination and degradation of HIF-1α (Semenza 2007). IL-8/NF-κB 

signaling axis has been reported to upregulate VEGF expression through HIF-independent 

proangiogenic processes, while suppression of NF-κB signaling in animal model of ovarian 

cancer destroyed tumor angiogenesis with suppression of VEGF and IL-8 (Huang et al 2000).  

Furthermore, Hsp90 inhibitors-mediated suppression of NF-κB was observed in several 

studies. Taken together, these data suggested that Hsp90 inhibition reduced NF-κB activation 

in tumor angiogenesis through IL-8 mediated signaling pathway.  

RTKs are transmembrane proteins that transport the extracellular signals to the 

intracellular context thereby regulating certain critical cellular events and tumor hallmark 

such as angiogenesis. Given that RTKs comprise the largest category of Hsp90 client proteins, 

it is promising to suppress angiogenic signalings and ameliorate therapeutic resistance using 

Hsp90-targeted inhibitors, since acquired  chemoresistance is a common challenge for 

application of tyrosine kinase inhibitors (TKIs) as anti-angiogenic approach because of 

activation of compensatory and redundant signaling in several cancer types ( Bohonowych et 

al 2010). For example, the family of platelet-derived growth factor (PDGF)/fibroblast growth 

factor (FGF)/VEGF signaling axis has been reported to play a critical role for angiogenesis in 

several transformed cells of malignancy. Mutations and upregulation of PDGF-receptor α and 

β have been observed in human cancers to regulate vascular permeability and VEGF 

expression. Crawford et al reported PDGF-C as a key mediator of tumor-associated 
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fibroblasts (TAFs)-induced angiogenesis from resistant EL4 tumors, which are refractory to 

anti-VEGF treatment. In the same study, neutralizing antibody against PDGF-C blocked 

angiogenesis in such TAFs and slowed down the tumor growth with anti-VEGF resistance 

(Crawford et al 2009). These findings suggested that a combination therapy utilizing 

anti-PDGF-C and anti-VEGF antibodies may be more effective and synergistic than 

anti-VEGF treatment alone. Moreover, this study also indicated that exposure of tumor cells 

to anti-VEGF therapy may stimulate them switch to another survival signaling, in this case, 

upregulation of PDGF-C inducing angiogenesis in vivo produced by those TAFs from 

anti-VEGF-refractory tumors.   

Several chemo-resistance molecular mechanisms have been uncovered in both 

preclinical and clinical studies that activate partially redundant signaling pathways regulating 

the hallmarks of cancer, including EGF/IGF/HGF/VEGF proangiogenic signaling pathways, 

and PDGF/FGF/VEGF signaling module (Bohonowych et al 2010). In response to 

therapeutic killing, cancer cells develop a large scope of compensatory and interconnected 

mechanisms to cope with a variety of individually-targeted treatment. These evidences 

strongly support the use of combinational therapy as a complementary means to combat 

chemo-resistance induced by redundancy of oncogenic signalings in human cancers. Given 

that the majority of these oncogenic proteins identified as Hsp90 client proteins, 

Hsp90-directed pharmacological intervention becomes promising for broad suppression of 

these signaling interactions within the tumor progression. 

TAFs/CAFs is a pivotal component in the TAFs/CAFs-rich stroma contributing to 

tumorigenesis. Accumulating evidences indicate targeting those fibroblasts may facilitate 
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anti-cancer therapy by affecting oncogenic interactions between cancer cells and the assorted 

cell types constituting the tumor microenvironment. Intriguingly, Hsp90 inhibitors 

suppressed the reactive stroma phenotype in hepatic stellate cells and induced 

caspase-8-mediated apoptosis via sphingomyelinase- and NF-κB-dependent pathways 

(Myung et al 2009). In addition, Akt/PI3K and MAPK signaling pathways were activated in 

pancreatic stellate cells and colon cancer through upregulation of periostin, a component of 

extracellular matrix to promote tumor metastasis and invasion (Erkan et al 2007;Bao et al 

2004), suggesting targeting Hsp90-client oncogenic signalings may represent a novel 

approach for anti-stroma regimen in the future even though these area are still at rudimentary 

stage and await to be investigated further.  

 

B. Exploration of small molecule inhibitors of Hsp90 activity: Small molecule inhibitors 

targeting Hsp90 with minimum off-target effects should be considered for cancer 

treatment. 

Almost two decades ago, Whitesell et al firstly demonstrated Hsp90-involved heteroprotein 

complex formation was required for v-src-mediated morphologic transformation and 

benzoquinone ansamycins such as Geldanamycin (GA),  can inhibit Hsp90-src through 

competitive binding to Hsp90 (Whitesell et al 1994). Subsequently studies of HSPs-targeted 

anti-tumor therapy proliferated in both preclinical and clinical stages (Table I, II and III). 

Recently, Roué et al reported the Hsp90 inhibitor IPI-504 (retaspimycin hydrochloride) 

restored drug sensitivity in proteasome inhibitor bortezomib-resistant aggressive mantle cell 

lymphoma (MCL) (Roué et al 2011). In their study, one of Hsp70 family members, 
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BiP/GRP78 was up-regulated in aggressive B-cell malignancies including MCL and was 

responsible for constitutive or induced-bortezomib resistance. IPI-504 in combination with 

bortezomib dissociated Hsp90-BiP/GRP78 complex, causing the latter to be depleted thus 

affecting the UPR and restoring apoptosis (Roué et al 2011). These findings added a novel 

function of Hsp90 in cancer treatment by inhibition of UPR-related oncogenic phenotypes 

including drug resistance and evasion of apoptosis. With the help of X-ray crystallography 

and structure-based drug design to improve potency, a second class of synthetic Hsp90 

inhibitors have been reported, NVP-AUY922 (Novartis) is a novel Hsp90 inhibitor and has 

the highest affinity for the NH2-terminal ATP-binding site among synthetic small molecule 

inhibitors. Effects of NVP-AUY922 include inhibition and/or repression of tumor growth in 

tumor xenografts with a variety of types of human cancers, blockage of tumor cell invasion 

and metastasis both in vitro and in vivo, and depletion of client proteins including BCR-ABL, 

ERBB2, CRAF, CDK-4, AKT and HIF-α (Eccles et al 2008).  

Recent studies show impressive synergistic action of NVP-AUY922 with melphalan, 

doxorubicin, NVP-LBH589, and suberoylanilide hydroxamic acid (SAHA) in multiple 

myeloma and build the experimental foundation for clinical trials (Kaiser et al 2010). Of 

notice, cell surface Hsp90 was found on melanoma cells, fibrosarcoma cells, bladder cancer 

cells, prostate cancer cells as well as neuronal cells and play an important role to control 

cancer cell migration independent of intracellular Hsp90 pool function (Tsutsumi et al 2008). 

Intriguingly, extracellular Hsp90α once hyperacetylated by HDAC inhibitor acted as a 

chaperone for MMP-2 to promote tumor cell invasion, suggesting inhibition of extracellular 

hyperacetylated Hsp90α may affect tumor invasion and metastasis (Yang et al 2008).
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Table 2. Hsp90 Inhibitors in Clinical Trials 

Hsp90 Inhibitor 
Clinical 

Trial Phase Cancer References 

Geldanamycin  I* thyroid (hepatotoxicity in vivo) Supko 1995; Park 2003;Kim 2009; Samuni 2010 

17-AAG (Tanespimycin) II/III breast, leukemia, prostate Janin 2005; Grem 2007; Erlichman 2009 

17-DMAG   

   
  

    

I breast, leukemia Palacios 2010 

Retaspimycin hydrochloride I/II/III NSLC, GIST, pancreatic, MCL Hanson 2009; Dewaele 2008 

IPI-493 I advanced solid tumors Porter 2009; Croasdell 2010 

Radicicol I in vitro (no + in vivo results) Delmotte 1953; Soga 2003 

Purine-scaffold inhibitors I Hodgkin's lymphoma, CLL Zhang 2010 

Shepherin - leukemia (animal model) Plescia 2005 

Pyrazoles (CCT-018159) - prostate cancer (in vitro) Rowlands 2004; Cheung 2005; Barril 2006; Sharp 2007 

PU24FCI II breast, CLL, SCLC Vilenchik 2004 

Mesylate (SNX-5422) I HT-29 model Huang 2009; Fadden 2010 

STA-9090 I mast cell tumors Lin 2008;Wang 2010 

NVP-AUY922 - breast, prostate, GBM, MM Eccles 2008;Tauchi 2011;Gaspar 2010 

Oxime derivative KF58333 - breast (in vitro) Soga 2001; Kurebayashi 2001 

Novobiocin II breast and melanoma (in vitro) Donnelly 2008; Yang 2003; Nordenberg et al 1992 

Coumermycin A1 - breast (in vitro) Marcu 2000 

Cisplatin I/II/III/IV head and neck Donnelly 2008; Ashan 2010 

AR-42 (HDAC6) I mast cell tumors, MM, B-cell Lin 2010; Zhang 2010; Lucas 2010 

Vorinostat/SAHA (HDAC6) I/II Leukemia, head and neck Kovacs 2005; Yang 2008; Blumenschein 2004 

Romidepsin/FK228 (HDAC6) II T-cell lymphoma Chen 2005; Piekarz 2011 

*Clinical Trial suspended 

 38 
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Table 3. Chemotherapy Drugs that Synergize with Hsp90 Inhibitors 

Drug Combinations 
Clinical 

Trial Phase Disease References 

17-DMAG + arsenic oxide  - leukemia Wu et al 2009 

17-AAG + Gleevec/imatinib - leukemia, breast cancer Radujkovic et al 2005 

17-AAG + bortezomib II multiple myeloma Richardson et al 2010 

17-AAG + HDAC-6 siRNA - leukemia  Rao et al 2008 

IPI-504 + Gleevec/imatinib - leukemia (mouse model) Peng et al 2007 
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Definition of four phases clinical trial from NIH: 

Phase I clinical trials test a new biomedical intervention in a small group of people (e.g., 

20-80) for the first time to evaluate safety (e.g., to determine a safe dosage range and to 

identify side effects). 

Phase II clinical trials study the biomedical or behavioral intervention in a larger group of 

people (several hundred) to determine efficacy and to further evaluate its safety. 

Phase III studies investigate the efficacy of the biomedical or behavioral intervention in large 

groups of human subjects (from several hundred to several thousand) by comparing the 

intervention to other standard or experimental interventions as well as to monitor adverse 

effects, and to collect information that will allow the intervention to be used safely. 

Phase IV studies are conducted after the intervention has been marketed. These studies are 

designed to monitor effectiveness of the approved intervention in the general population and 

to collect information about any adverse effects associated with widespread use. 

 

Summary of Hsp90 inhibitors in the current clinical trial 

Hsp 90 inhibitors are composed of two major classes, natural products and synthetic 

products. Natural products include Geldanamycin (GA) and radicicol (RD) as well as their 

derivatives. They modulate Hsp90 molecular chaperone function in a similar manner and 

have comparable biological activity. Synthetic inhibitors include purine and pyrazoles as well 

as their derivatives, which have been discovered by structure-based design, fragment-based 

design, high throughput screening as well as virtual screening. 
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Figure 3. Chemical structure of Geldanamycin (GA)-related compounds. The ‘R’ group 
in GA can be replaced with the indicated side group to make the following compounds: 
Tanespimycin (17-AAG), 17-amino-17-demethoxygeldanamycin (17-AG), 
17-dimethylaminothylamino-17demethoxy-geldanamycin (DMAG) (Refer to Erlichman 
2009). 



www.manaraa.com

 42

 

GA is a potent cytotoxic drug but has been terminated in the clinical trial due to several 

reasons including severe hepatotoxicity, unstable metabolism and chemical structure as well 

as poor solubility. A substantial effort has been devoted to modify its structure to overcome 

aforementioned side effects. 17-AAG (Tanespimycin) is a result of the relative ease with 

which the C-17 methoxy group substituted by amino and small unhindered alkylamino 

groups. Kosan Pharmaceuticals developed a DMSO-free formulation of 17-AAG in the 

combination with other drugs such as trastuzumab or bortezomib, which resulted in 

encouraging clinical results reported in trastuzumab-resistant HER2-positive breast cancer 

and in multiple myeloma patients even if refractory to bortezomib. 17-DMAG was designed 

by the NCI and Kosan as a more soluble analogue of 17-AAG. 17-DMAG entered clinical 

trials in 2005 to treat patients with acute myeloid leukemia (AML) and was discontinued at 

the beginning of 2008.  

Retaspimycin hydrochloride (IPI-504) and Alvespimycin (IPI-493/KOS-1022) are the 

second generation Hsp90 inhibitors developed by Infinity to treat different types of cancer. 

These drugs show higher solubility exemplified by IPI-504 being 400-fold more soluble than 

17-AAG. As a highly soluble hydroquinone hydrochloride derivative of 17-AAG, IPI-504 has 

entered the clinical trials in phase III for gastrointestinal stromal tumor (GIST), phase II for 

non-small-cell lung cancer (NSCLC) and breast cancer, phase I for sarcoma and multiple 

myeloma. IPI-493 is a water-soluble, stable GA derivative 17-DMAG with limited 

metabolism and higher oral bioavailability, demonstrating more potent in vitro and in vivo 

anti-tumor effect than 17-AAG. It has entered in phase I clinical trial for advanced solid 

tumors (Porter et al 2009; Croasdell et al 2010).    
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Radicicol (RD) is a macrocyclic lactone antibiotic first purified from the fungus 

Monosporium bonorden. RD has no in vivo activity due to instability in serum. In order to 

enhance its in vivo activity, oxime derivatives have been synthesized to reduce the 

electrophilicity of the Michael acceptor. KF58333 demonstrated potent anti-proliferative 

activity against all breast cancer cell lines tested in vitro and depleted hsp90 client proteins 

such as erbB2, raf-1 and Akt in the tumor tissues from nude mice (Soga et al 2001). 

The basis of the designing the first synthetic Hsp90 inhibitors was using ATP mimics 

composed of a purine structure tethered by a linker to adjacent aryl moiety to form the 

C-shaped conformation. This unique shape can compete with ATP for binding to the 

N-terminal nucleotide pocket of Hsp90. As a purine-scaffold modified drug, PU24FCI results 

in multiple anti-tumor activities through degradation of Hsp90-client proteins including 

HER-2, Akt and Raf-1 in tumors. In addition it demonstrates 10- to 50- fold higher binding 

affinity to Hsp90 from transformed cells and has entered phase II clinical trial for breast 

cancer, small-cell lung cancer and chronic lymphocytic leukemia (CLL). 

Pyrazoles and isoxazoles represent another novel scaffold to be characterized and 

developed as Hsp90 inhibitors. CCT-018159 was discovered by a high throughput screening 

against a 50,000 compounds library and had good activity in a proliferation assay using 

HCT116 colon cancer cells. isoxazoles are chemically related to pyrazoles as a novel type of 

Hsp90 inhibitors by binding to the N-terminal ATP pocket. These derivatives demonstrated 

promising effect in the cell growth inhibition assay exemplified by NVP-AUY922, which has 

entered phase I clinical trial for advanced cancer.  

Serenex developed an oral Hsp90 inhibitor, Mesylate (SNX-5422), which has entered 
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phase I clinical trial for evaluation of some types of cancers, although the structures are not 

reported. Synta developed an intravenous Hsp90 inhibitror, STA-9090, which as entered 

phase I/II clinical trial for solid tumors and hematologic Malignancies. There are no clinical 

data available using aforementioned synthetic inhibitors, however, it is worthy to expect 

intriguing results form these studies.  

Cisplatin is a FDA approved drug to be used alone or with other drugs to treat several 

types of cancer (http://www.cancer.gov/cancertopics/druginfo/cisplatin). It is also being 

investigated in the other types of cancer. Cisplatin is an inorganic platinum agent 

(cis-diamminedichloroplatinum) with anti-tumor activity. It can form highly reactive, charged, 

platinum complexes to bind to GC-rich sequences in DNA, inducing intra-strand and 

inter-strand DNA crosslinks, as well as DNA-protein crosslinks, finally leading to apoptosis 

and cell growth inhibition. It has been reported that Cisplatin prevents Hsp90 from interacting 

with hormone receptors, such as AR and GR. In vitro study in pediatric cancers also showed 

combinational therapy using Cisplatin and GA suppressed the ability of GA to induce a 

cytoprotective heat shock response and resulted in synergistic anticancer acitivity (Bagatell et 

al 2005).  

HDAC inhibitors including suberoylanilide hydroxamic acid (SAHA), FK228 and 

AR-42 have been reported in clinical trials for evaluation of the treatment of several types of 

cancer. SAHA or Vorinostat is a member of a larger class of compounds that inhibit histone 

deacetylases (HDAC), which remove the acetyl groups on the DNA backbone, increase the 

positive charge of histone tails on the amine groups and high-affinity binding between the 

histones and DNA backbone and finally prevents transcription. The effect of Hsp90 

http://www.cancer.gov/cancertopics/druginfo/cisplatin
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acetylation on chaperone function exerted by HDAC inhibitors has been extensively studied 

in several types of cancer models (Rao et al 2008; Yang et al 2008; Wanczyk et al 2011).  

Novobiocin is an aminocoumarin antibiotic produced by the actinomycete Streptomyces 

niveus, which was also subjectively called S. spheroides. Other aminocoumarin antibiotics 

include clorobiocin and coumermycin A1. These compounds can bind type II topoisomerases, 

including DNA gyrase, thereby inhibiting the enzyme-catalyzed hydrolysis of ATP as good 

candidates for research of the treatment of bacterial infection.   

The C-terminal binding domain of Hsp90 was reported to bind not only ATP, but also 

cisplatin, novobiocin, epilgallocatechin-3-gallate (EGCG) and taxol. Novobiocin binds 

weakly to the Hsp90 C-terminal ATP binding site but structural modification can improve this 

compound binding affinity with1,000 higher in anti-proliferation assay. Novobiocin entered 

in one phase II clinical trial when in combination with high-dose chemotherapy for the 

treatment of advanced breast cancer, Clinical data did not translate into a substantial increase 

progression-free survival (PFS) and overall survival (OS),compared with controls treated 

with high-dose alkylator therapy alone (Hahm et al 2000).  
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CHAPTER FOUR 

CONCLUSIONS & FUTURE DIRECTIONS 

 

It was originally held that Hsp90 function was solely associated with the stabilization 

the nascent proteins and protein complexes in the cytoplasm, while subsequent work showed 

a multifaceted role for HSPs in intracellular transport, maintenance and degradation of client 

proteins, and participation in many biochemical signaling pathways to preserve intracellular 

homeostasis. An immense amount of work has been done, and continues to be done, to 

progress the field over the last two decades, focusing substantially on Hsp90-asscociated 

client proteins, which play a complex role in the maintenance of each of the core intracellular 

signaling networks relevant to the Hallmarks of Cancer. Many Hsp90 inhibitors capable of 

binding within either the N- and C-terminal domains of Hsp90 have been found, synthesized, 

and characterized, and many have proven useful for treating a variety of human diseases 

including cancer (Tables I, II).  

However, information from animal studies and clinical trials has not shown substantial 

progress in the use of Hsp90 inhibition as a first line of defense, suggesting that Hsp90 

inhibition would be infinitely more affective in combination with other therapies. Here, we 

summarize many of the current combinational therapies or treatments using Hsp90 inhibitors 

from both clinical trials and laboratory studies (Table III). Many combinations show a 

synergistic effect when compared to individual, independent drug treatment in several types 

of cancers. Of note, however, a synergistic effect was not observed in several murine solid 
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tumor models compared to blood-related cancers, likely due to the inherent differences 

between these types of cancers, their tumor microenvironment, the effective delivery of the 

compounds, and other as yet unknown factors. Quite possibly, there exists redundant 

signaling pathways that may be activated in solid tumors, promoting increased survival as a 

consequence. For example, initial clinical studies showed that targeting angiogenic signaling 

in human glioblastomas allowed tumor cells to shift toward invasiveness and metastasis, 

resulting in the tumor cells having access to pre-existent blood vessels within the surrounding 

normal tissue vasculature (Ellis et al 2009; Verhoeff et al 2009; Norden et al 2009). Moreover, 

the molecular heterogeneity of cancers exemplified by the elaborate integrated signaling 

circuitry clearly influences the therapeutic killing effect. To complicate matters, differential 

client protein affinity with Hsp90 in a variety of cancer types, as well as within desmoplastic 

tumor microenvironment (like CAFs), can be supportive factors for inducing resistance to 

therapeutic treatment.  

In order to consider a regimen targeting Hsp90 in a broad sense, the following 

suggestions should be considered for both future basic science and clinical studies, as well as 

when assessing the utility and effectiveness of Hsp90-targeted approaches: 

1. Inhibiting Hsp90 in combination with other heat shock proteins, such as Hsp70 and 

Hsp27, which may be an alternative strategy to enhance synergistic cancer therapy 

with minimum off-target side effect. As mentioned earlier, Hsp90 inhibition was 

reported to upregulate Hsp70 and Hsp27 expression in tumor cells in order to 

prevent apoptosis. 

2. Additional studies should be accomplished to define the precise molecular 



www.manaraa.com

 48

mechanism(s) of Hsp90 client proteins responsible for the unique phenotypes in 

different types of cancer in order to understand the exact Hsp90 biochemical 

functions implicated in multiple oncogenic signaling networks. This will ultimately 

allow for the identification of reliable biomarkers for monitoring the effects of 

Hsp90 suppression in vivo, as well as for optimizing drug transmission and 

treatment efficacy through various combinational therapies targeting major 

oncogenic signaling pathways.  

3. The use of specific cellular or subcellular targeting for chaperones needs to be 

considered and developed. Accumulating evidence suggests alternative locations of 

HSPs, especially Hsp90 inside or outside of the cells, in the cytoplasm, in the 

nucleus, etc., which indicates it plays a unique role as part of a tumor-specific 

phenotype. Therefore, development and validation of cell-location-specific 

inhibitors will benefit Hsp90 targeted chemotherapy in human cancer, especially 

when used in combination with efficient delivery approaches. 

4. Screening of novel chemical structures with increased solubility and stability in 

vivo will provide the potential for oral administration in the clinic in order to 

eliminate the current issues of hepatoxicity and limited solubility related to some 

Hsp90 inhibitors. 
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